

AFRL-IF-RS-TR-2003-306
Final Technical Report
December 2003

BATTLE MANAGEMENT ALGORITHMS FOR
AUTONOMOUS UNMANNED SYSTEMS (BMAAUS)

CACI Technologies, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-306 has been reviewed and is approved for publication.

APPROVED: /s/
 KENNETH LITTLEJOHN
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
DECEMBER 2003

3. REPORT TYPE AND DATES COVERED
FINAL Aug 01 – Dec 02

4. TITLE AND SUBTITLE
BATTLE MANAGEMENT ALGORITHMS FOR AUTONOMOUS UNMANNED
SYSTEMS (BMAAUS)

6. AUTHOR(S)

Jennifer Seitzer

5. FUNDING NUMBERS
C - F30602-00-D-0221 Task 0008
PE - 62702F
PR - 558T
TA - QF
WU - 09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CACI Technologies, Inc. University of Dayton
1300 Floyd Avenue Department of Computer Science
Rome NY 13440 300 College Park
 Dayton OH 45469-2160

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFT
525 Brooks Road

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-306

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Kenneth Littlejohn/IFTA/(937) 255-6548, X3587 Kenneth.Littlejohn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Autonomous agents are self-directed, independent entities that interact with an environment by in-taking percepts
through sensing devices and by acting on the environment through effectors. This work centers on autonomous entities
in an adversarial environment that operate with conflicting goals, process noisy data, adapt in real-time to a dynamic
environment, and collaborate to achieve one or more collective goals. In this proposed work, the domain of application
is robotic soccer. Ultimately, we expect the research to apply to work in Unmanned Air Vehicles (UAV). The work
performed in this project relates to the implementation of autonomous agents.

15. NUMBER OF PAGES14. SUBJECT TERMS
Autonomous Agents, Reinforcement Learning, Layered Learning, Communication and
Collaboration Protocols, Multiagent Planning, Territoriality, Real-Time 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

27

Rome, NY 13441-4505

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND... 1
2.1. ROBOTIC SOCCER.. 2
2.2. AGENT PROGRAMS AND AGENT ARCHITECTURES... 2

3. THE ORIGINAL AGENTS AND THE ROBOCUP ENVIRONMENT ... 3
3.1. THE JAG CLIENT (C++ CLIENT) ... 4
3.2. THE COMMUNICATION MODEL ... 4
3.3. DEVELOPMENT OF THE GOALIE... 6
3.4. DEVELOPMENT OF THE POSITIONAL MODEL ... 6

4. BEOWULF CLUSTER WORK.. 8
4.1. CLUSTER COMPUTING ... 8
4.2. AUGMENTATION OF THE CLUSTER .. 9
4.3. SOFTWARE INSTALLATION .. 9

5. CONCLUSION... 21

6. BIBLIOGRAPHY... 21

7. APPENDIX ... 22

i

1. Introduction

The work we performed in this project relates to the implementation of autonomous

agents. The first part (duration of 9 months) implemented agents in the domain of robotic

soccer. The second part augmented an existing Beowulf cluster at the Wright Patterson

Air Force Base. Ultimately, we expect both aspects of this research and implementations

to apply to work in Unmanned Air Vehicles (UAV).

In this twelve month period of investigation, we have performed an ongoing literature

search, downloaded and experimented with several versions of the Robocup Soccer

Server along with several existing clients on several platforms, successfully performed

superficial modifications to several clients, written two original soccer playing clients in

both C++ and Java, and augmented a Beowulf cluster with four additional Pentium

machines.

2. Background

Autonomous agents are self-directed, independent entities that interact with an

environment by in-taking percepts through sensing devices and by acting on the

environment through effectors. This work centers on autonomous entities in an

adversarial environment that operate with conflicting goals, process noisy data, adapt in

real-time to a dynamic environment, and collaborate to achieve one or more collective

goals. The agent work accomplished in this funding period resided in the domain of

robotic soccer. In future work, we expect the research to apply to work in Unmanned Air

Vehicles (UAV). The scope of the overall project encompasses four phases: Phase I:

1

Beowulf Construction, Phase II: Autonomous Agent Implementation, Phase III:

Endowing Intelligence, and Phase IV: Application to UAV’s. The work accomplished

here focused on Phase I and Phase II where we augmented a Beowulf cluster and

implemented autonomous entities using a multi-agent computing system to run on that

cluster.

2.1. Robotic Soccer

In Peter Stone’s Layered Learning in Multi-Agent Systems, the author delineates many

techniques and principles for the construction of computing systems housing multiple

agents. Using the problem domain of robotic soccer, he provides mechanisms for the

coordination of independent agents’ behaviors where “behavior” is defined as a mapping

from perceptions to actions (over time). Robotic soccer is the programming and building

of robots equipped to participate in competitive soccer tournaments. This global

endeavor is embodied in the pursuit known as RoboCup. RoboCup research is quite

apposite to many significant problems in both military and industrial applications. The

work of robotic soccer embodies the formalization and implementation of a system of

multiple collaborating agents operating in a real-time, noisy, and adversarial

environment. The RoboCup organization provides a software platform for research on the

software aspects of RoboCup.

2.2. Agent Programs and Agent Architectures

In [Russell and Norvig 1995], agents are defined as an agent program plus its

architecture. The agent program is the “brains” of the agent housing decision-making

2

and reasoning capabilities. It is here that, given a sequence of agent percepts, the next

agent action is determined. The architecture is responsible for receiving and transforming

percepts into a form recognizable by the agent program, and for transferring the agent

program’s determined action to the agent’s effectors. Thus, the main impetus of software

research in autonomous agent work lies in agent program development.

Agent program development entails development of planning, collaboration, and

navigation algorithms. The agent architecture is manifested either by a physical robot or

a software simulator. Usually, development and experimentation takes place on a

simulator and then successful programs are transferred to the physical agent (i.e., the

robot). The simulators are typically implemented using a client-server architecture by

housing the agent program in the client, and the agent architecture in the server.

In this work, we used the server provided by the RoboCup organization (see

http://sserver.sourceforge.net) to serve as our agent architecture and thus, to test our

algorithms. Both client/agent programs we wrote housed a different original algorithm.

3. The Original Agents and the Robocup Environment

The Robocup environment is one in which the soccer server is standardized and provided

for all participants. Any agent is composed of an agent architecture (those parts that react

and act on the environment) and the agent program (the decision making module that

chooses the agent’s actions to take). In the Robocup paradigm, the agent architecture is

3

housed in the soccer server and the agent program constitutes the client. The clients,

therefore, embody the agent’s intelligence and skill.

In the funded period, we composed two original soccer-playing agent clients: the JAG

client and the Biter-derived client. The JAG client was written in C++ and performed far

better than the Biter-derived client which was written in Java.

3.1. The JAG Client (C++ Client)

The JAG client is an operational agent program which successfully plays soccer in the

Robocup environment. After the initial, primitive implementation, several strategic

issues needed to be addressed in order to increase the ability of the JAG client. Many of

these have been implemented and are currently working. Others are still being studied

and refined.

Two major goals that we wanted to accomplish to refine the JAG agent involved

developing communication between clients and developing the agent to behave as

a goalie.

3.2. The Communication Model

Our main goal with the communication model was to develop a local positioning model

between the agents. This position model ensures that if two (or more) teammates are

going after the ball, they won’t bump into each other. The following procedure is

employed:

1) The agents commence by continuously sending messages to the server whenever they

get within twenty units (or less) of the ball. These messages contain the agent’s team

4

name, the agent’s player number, and the current distance the agent is from the ball.

Sending a message does not count as an action, so multiple messages may be sent per

time cycle.

2) Once a message is sent to the server, the other agents can receive the message to get

relevant information. Received messages look like this: (hear 59 2 “JAG 2 6.7”),

where 59 is the time, 2 is the player who sent the message, and the quoted string is the

actual message that was sent. As stated above, our messages contain the team name,

the player who sent the message, and the player’s distance from the ball.

3) Once an agent receives a message from another player, the agent compares its

distance from the ball with the other player’s distance from the ball. If the agents are

both within a radius of 10 units from the ball, the agent closest to the ball will go for

the ball, while the other agent’s desire to go towards the ball will be suppressed. In

the manner, we never have two or more agents from the same team crowded around

the ball.

There is one problem with this model, which the global positioning model will take care

of once it is fully developed. The problem is that the local positioning model only makes

sure that agents are not crowded around the ball. It does not take care of the fact that

other agents who are away from the ball may be crowded around each other. However,

once the global positioning model is developed, the agents will be spread out into

overlapping zones, where they will be restricted to cover their zone area. The local

positioning model will then come into play when the ball falls into an area where zones

overlap.

5

3.3. Development of the GOALIE

In order to get the server to recognize a player as being the goalie, a special initialization

command must be sent to the server. To do so, the user starts up our client with a –g tag

to tell us that they want the first player to be a goalie. The command line appears thusly:

 $./soccer –g

Once the client is initialized as a goalie, it simply runs the goalie code and suppresses the

regular agent code. It is important realize that the goalie is part of the same program as

the other players. In keeping with the rules posed by the Robocup organization, a

separate program was not developed for the goalie. Rather, the goalie runs a separate

piece of code (the goalie code) within the agent. Moreover, the goalie also uses code that

is relevant to all agents, such as the communication model.

Our future work in refinement of the goalie, is to force it to play positionally. That is, to

let the goalie only play in the goalie area. In the next section, we discuss our current

attempts to developing a positional model for all players.

3.4. Development of the Positional Model

Our first attempt at a positional model included using a series of flags to form a positional

boundary to which the player was confined. In order to implement this, many flags were

needed for comparison. This, in addition to unreliable flag distance and direction values

sent from the server, caused the functions governing the boundaries to be very lengthy

and the boundaries to be inaccurate and unreliable. This forced us to find an alternate

method to achieve our positional model.

6

Our next attempt at attaining a positional model was to use the absolute position of a

player on the field. The absolute position of a player is a set of x and y coordinates that

defines exactly where the player is located on the soccer field. The absolute position is

achieved by comparing the player’s distance to a line to find an x or a y coordinate using

the equation below:

))
180

sin((πIONLINEDIRECTCELINEDISTANabs

This equation will find either the x or the y coordinate depending on which lines we are

looking at, vertical or horizontal. To find the other coordinate, we used the closest

known flag to the player. Based on this we developed three equations to handle the three

different locations of the flags: outside the field, inside the field, and on the boundary

line. If the flag is on the outside of the field we use this equation:

 22)5(+− LINESTANCECEFLAGDISTAN

If the flag is on the field line, we use the following equation:

22)(LINESTANCECEFLAGDISTAN −

We are still working on implementing the equation for the condition that the closest flag

to the player is inside the field. This, along with defining the exact x and y player

boundaries, is part of our future work. As soon as we get the absolute x and y

7

coordinates of the player finalized, we can use upper and lower boundaries limit to

restrain the player from moving any further. Once we have this positional model

finalized, we will work on a team dynamic positional model in which the team moves as

a whole up or down, left or right, of the field and still maintains their positions.

4. Beowulf Cluster Work

The goal of Phase I of the overall research project was for a Beowulf cluster executing

parallel models, demonstrating and assessing military effectiveness, to be built. The

parallel system will ultimately be endowed with intelligence in the form of dynamic

intelligent modules that are periodically exchanged between autonomous entities in a

peer-to-peer fashion. This mechanism will, among other things, help realize the goal of

effective autonomous operation. Additionally, in order to provide an information-centric

platform and interface, a publish and subscribe information exchange facility will be

designed and implemented. In the final three months of the funding period, we

augmented the Beowulf cluster with four Intel architecture machines.

4.1. Cluster Computing

Cluster computing enables us to build a scalable multiprocessing computing system using

a network of possibly heterogeneous computers. A Beowulf cluster is a collection of

possibly heterogeneous COTS processors interconnected by a local area network using a

high speed switch and running coordinating software to emulate the operation of a large

high performance parallel machine. The main objective of using a Beowulf is to provide

a large amount of CPU processing power with minimal expense. Moreover, the

8

construction of a Beowulf often allows us to absorb hardware into a functional capacity

by creating a larger, more powerful computational machine. Some examples of

coordinating software that perform the parallel machine emulation over the network are

Parallel Virtual Machine (PVM) and Message Passing Interface (MPI).

4.2. Augmentation of the Cluster

The augmentation of the cluster entailed loading operating systems, cluster software, and

benchmark test software. We delineate the steps we took to load the cluster software and

testing software as follows.

4.3. Software Installation

To upgrade and install MPI software, we selected the LAM-MPI package because it was

initially used on the cluster and because its distribution as source code makes it easier to

install on multiple architectures. The first step in the upgrade of the established cluster

was the upgrade of the MPI software from version 6.5.4 to 6.5.6. While installing that

software, we also added a link to shared install path on Blackbox so all machines have

the same LAMHOME path.

The original MPI software is still on Blackbox under /usr/export/debian/usr/local/lam-

mpi-old. The new software has two different versions for the two architectures in the

cluster and only the appropriate version is mounted on each of the worker nodes via NFS.

The actual install paths are all on Blackbox, but each computer mounts the platform

specific MPI package in /usr/lam-mpi. On Blackbox these packages are in

/usr/export/debian/usr/lam-mpi for the Sun architecture and /usr/export/debian-

9

x86/usr/lam-mpi for the x86’s. Blackbox has a soft link to the x86 version in its local

/usr/lam-mpi.

Once the software was installed, the systems needed to be configured to be aware of the

LAM-MPI’s binary files. This was done in both the .profile and .bashrc files in the

/home/sserver directory. This replication was necessary due the bash shell’s nonstandard

remote login procedure; when bash does a non-interactive remote shell, it only loads the

.bashrc file. All that was necessary in the .bashrc and the .profile files was the inclusion

of /usr/lam-mpi/bin in the PATH variable’s list. This list is then exported and the MPI

binaries are visible without needing absolute paths.

At this point the installation was tested with the original group of Sun machines. It

performed a lamboot successfully, which creates the daemon on the remote machines to

allow MPI processes to run. This procedure works even though Blackbox’s PATH

variable is going through a link and is not an absolute path.

Once the systems would initialize the MPI daemon, we attempted to run the LAM test

suite. This attempt failed and it caused a cascade failure that took down much of the

network. This was our first indication of the Ethernet adaptor problem that is discussed

in-depth elsewhere.

Because of the previous failure, the next step was to make sure any program would run

successfully on the cluster. This was done by compiling the example programs that are

included in the LAM-MPI package. The first program that was attempted was a simple

program called ring. In order for this, or any MPI program, to work on the cluster, two

versions must be compiled and copied into a directory that is part of the PATH variable.

For these test programs, we standardized on the /usr/local/bin directory on both the Sun

10

machines and the x86’s. Once a Sun version was compiled and added to the

/usr/export/debian/usr/local/bin directory on Blackbox, the Sun machine’s /usr/local/bin

directory, the test was performed and ran successfully.

Further testing showed that the basic test programs work with no problems, but programs

that transfer large amounts of data will kill the network. This was first discovered using

the Mandelbrot test program that failed in the same manner as the LAM test suite.

At this point the new x86 nodes were added into the cluster and the successful tests were

completed without complication, but the unsuccessful tests would still disconnect the Sun

machines from the network while causing no harm to the x86 nodes. The unsuccessful

tests were then performed on only the x86 machines without the Suns; in this

configuration the tests completed with no problems including the Mandelbrot program

and the LAM test suite.

Location of Important files

/usr/export/debian/usr/lam-mpi Sun MPI Install Directory on Blackbox

/usr/export/debian-x86/usr/lam-mpi x86 MPI Install Directory on Blackbox

/usr/lam-mpi Local MPI Install Directory on all Nodes

/home/sserver/.bashrc Location of PATH export command

Adding a New User

Copy .bashrc and .profile from /home/sserver to /home/new_user

Copy lam-bhost.def, lamSun-bhost.def, and lamX86-bhost.def from /home/sserver to

/home/new_user

11

Configuration Files

lam-bhost.def Standard LAM-MPI boot definition, includes all nodes

lamSun-bhost.def Original LAM-MPI boot definition, only uses Suns

lamX86-bhost.def New LAM-MPI boot definition, only uses X86s

Running a MPI Program

In order to successfully run a MPI program on this cluster, the program must be compiled

twice and put into a directory that is part of the PATH variable. Before any compilation

or execution can occur, the cluster must be invoked. This can be done in a variety of

methods. Depending on the complexity of the data sent during the execution of the

program, it may or may not run on the Sun machines. To run the cluster excluding the

Suns, invoke MPI using the lamX86-bhost.def file in /home/sserver. To boot normally

use the default lam-bhost.def file. To use either file as the boot definition, simply type

lamboot –d /home/sserver/lam-bhost.def at the command prompt. This will create a lamd

daemon on the node machines ready to accept remote access.

Once the system has been initialized, the program can be compiled. It must be compiled

for both the Sun and the x86 architecture. To compile the program for the Suns, rsh into

one of the nodes b1-b9 and run the Makefile or mpicc *.c as appropriate. Copy the

resulting binary file into /usr/local/bin while still logged into the Sun machine. Exit from

this remote shell and repeat the compile on Blackbox. The result of this compilation

needs to be copied into /usr/export/debian-x86/usr/local/bin in order for the x86 nodes to

be able to run successfully. Once it is copied successfully the original executable can be

invoked with the command mpirun N appname. This will cause the program to run across

12

all available nodes. If execution is to be limited to a subset of nodes, mpirun n0-n4

appname can be used instead. This command will execute the binary file on nodes 0-4

and ignore any additional nodes.

Once we were sure that the Sun machines were the problem and that the problem was

likely a hardware limitation, we proceeded to begin benchmarking the system. Our

primary benchmarking tool was the PovRay program used to test the initial cluster. The

other MPI aware test program HPC Games, was limited in its testing capability and

focused primarily on the performance of Blackbox. Although its focus did not help judge

the system, there was one interesting result from one test it performed that may explain

results gathered from PovRay.

The first test that was performed was a simple comparison between the render speeds of

different configurations of nodes. The results of this test are roughly what where

expected: overall the system performed at its best with all nodes as part of the system. In

individual tests, the 9 Sun nodes and the four x86 nodes came out to be roughly similar in

processing power. We also attempted a weighted configuration; this attempted to force

MPI into considering the x86 nodes to be roughly twice as powerful as the Sun nodes.

This produced almost identical results to the basic configuration. We suspect this is

because MPI is already performing load balancing and the additional configuration is not

necessary. Figure 1 shows the four configurations and how long each configuration took

to render the image. Figure 2 shows the average processing power of the overall cluster in

the four configurations.

13

Render Time

00:00

00:14

00:28

00:43

00:57

01:12

01:26

weighted normal x86 Suns

Node Configuration

Ti
m

e
(s

)

Figure 1 (shorter bars are better)

Render Speed

0

200

400

600

800

1000

1200

weighted normal x86 Suns

Node Configuration

Pi
xe

ls
/s

ec

Figure 2 (longer bars are better)

The next set of tests that was performed on the cluster was designed to test how different

sized processing problems affected the cluster’s performance. The results were a little

surprising and later tests using HPC Games showed a potential culprit. Each test

performed was on the same render image displayed in Figure 3 at four different

14

resolutions. Each resolution was run on the three typical boot schemas, the weighted

schema was removed due to minimal difference between it and the standard setup. The

results showing overall processing time are shown in Figure 4, the pixels per second

results are shown if Figure 5.

Figure 3 Test Image

15

Render Time

00:00
02:24
04:48
07:12
09:36
12:00
14:24

30
0x

20
0

80
0x

60
0

10
24

x7
68

16
00

x1
20

0

Resolution

Ti
m

e
(s

) All Computers
Suns Only
x86 Only

Figure 4 (Shorter Bars are Better)

Render Speed

0
500

1000
1500
2000
2500
3000
3500
4000
4500

30
0x

20
0

80
0x

60
0

10
24

x7
68

16
00

x1
20

0

Resolution

Pi
xe

ls
/s

ec All Computers
Suns Only
x86 Only

Figure 5 (Longer Bars Are Better)

16

The unusual part of these results is that as the render gets more complicated, the

combination of all of the machines runs slower then either just the x86’s or just the Sun’s.

We theorized that this is another manifestation of the network problem discussed earlier.

This is because of the results of one of the HPC Games benchmarks, which performed a

stress test of the network and determined the maximum bandwidth at varying sized

blocks of data. If this test is performed with just the Suns or just the x86’s, the typical

maximum network transmission speed is around 5MB/sec. If all of the nodes participate

in the test, the transmitting speed plummets to between .5MB/sec and .1MB/sec. This

would greatly influence any test that extensively uses the network. This is clearly visible

in Figure 6. This graph shows the percent difference between the test performed on all

machines and the test performed on just the x86’s. As the size of the render increases, the

performance gap also widens. This is also visible in Figure 5, after the 800x600 render,

the pixels/sec measurement stays roughly the same while at the same time the

homogenous boot schema’s continue to increase.

Percent Difference

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

300x200 800x600 1024x768 1600x1200

Resolution

Pe
rc

en
t

Figure 6

17

When we measured the time spent on the render on each of the 13 nodes, we discovered

that the system was balancing load reasonably well. The x86 nodes were performing

roughly twice the calculations compared to the Sun machines and the Sun machines listed

at the end of the boot schema were receiving less work then the others. This data is

plotted in Figure 7. This indicates that the load balancing system is working correctly and

is not the cause of the poor performance of the overall network. This conclusion is further

collaborated by the fact that as the render gets more complex, the percentages are not

affected and should produce a linear increase in speed. Since it does not, the problem is

probably in a different part of the system.

Precentage Rendered by Node

0

2

4

6

8

10

12

14

b1 b2 b3 b4 b5 b6 b7 b8 b9 b1
0

b1
1

b1
2

b1
3

Node

Pe
rc

en
ta

ge

300x200
800x600
1024x768
1600x1200

Figure 7

The final set of tests performed on the cluster was mapping how the addition of nodes

affects the total render time. To do this we tested clusters with 2 x86 nodes, 3 x86 nodes,

and finally all four x86 nodes. The results of these calculations are in Figure 8. As each

18

node was added, the time it took to render the same set of images dropped, but not quite

linearly. Each node added a percent of its processing power but as more nodes were

added, that percentage dropped. As more nodes are added, the effect of each additional

node will shrink until such time as its addition will have a negligible impact on

performance.

Node Comparison

00:00

02:24

04:48

07:12

09:36

12:00

14:24

16:48

2 Nodes 3 Nodes 4 Nodes

Number of Nodes

Ti
m

e
(s

) 1600x1200
1024x768
800x600
300x200

Figure 8

4.4. Recommendations on Cluster Upgrades

A less positive note about the operational status of the Beowulf can be found in a

hardware limitation imposed by the Sun workstations. The current network card utilized

in each machine, known as the SunLance NIC, has a hardware limitation in the size of its

internal buffer. Once there is an incoming or outgoing datagram that is too large, or too

much data in either direction, the buffer on the network card fills with error data. This

19

error data causes the network card to cycle through the buffer until all the error data has

been removed.

The process of cycling through the buffer requires the network card to be reset each time

an error data is read from the buffer. This constant cycling causes the system to be

removed from the network until the network card becomes stabilized again.

This problem only occurs on large data sizes. Small data sizes can fit through the network

card buffer with no problems. The actual size that causes a problem to manifest itself is

unknown at this time due to inadequate testing of the network card.

Also, this problem has been found to exist on x86 hardware in network cards built from

the “Tulip” chipset. Any network card that uses the “Tulip” driver for Linux will have

similar problems under the same circumstances for the same reasons.

Recommendations:

If the current hardware configuration is to be maintained, a proper testing of the network

card is in order. Otherwise full utilization of the Beowulf cluster will fail to exist. The

point of break should be determined and documented so that future programming for the

cluster can be written with less of a hassle.

Another method of overcoming the hardware limitation of the device would be to replace

the network cards in the Sun workstations. The current SunLance NIC is a half-duplex

10Mbit network card, which can be defined as well below slow in comparison to some of

yesterday’s network technology. Replacing the network card with a full-duplex 100Mbit

20

network card would improve the overall bandwidth of the Beowulf cluster as well as

overcome the hardware limitation of the current network card.

The easiest and best way to overcome the x86 problem is to replace the network card

with another that does not use the “Tulip” driver. Network cards for the x86 architecture

are relatively cheap and easy to obtain.

5. Conclusion

This year-long project was to study, develop, and implement autonomous entities on a

distributed cluster of workstations. We hope this work will eventually be applied to the

area of unmanned air vehicles. The work involves a four-phase endeavor spanning five

years of effort, work, and support.

In year one, described in this report, the Beowulf cluster was successfully augmented and

two original autonomous agent clients were implemented.

6. Bibliography

Official Robocupp website: http://www.robocup.org.

RoboCup Simulation page: http://sserver.sourceforge.net

Russel, Stuart and Norwig, Peter. Artificial Intelligence: A Modern Approach, Prentice-
Hall, 1995.

Stone, Peter. Layered Learning in Multiagent Systems A Winning Approach to Robotic
Soccer, MIT Press, 2000.

21

7. Appendix

User Instructions for Running the JAG System

RoboCup C++ Client Documentation for Team JAG
Developers: Greg Buzzard, Jeff Wassil, Anne Niehaus

1) Starting the server and monitor together on BlackBox

 -- Open a "root" shell, by clicking on the shell icon on the toolbar
 at the bottom of the screen, and having someone log in as root

 -- Type in the following commands at the prompt ($), omitting the $

 $ cd /usr
 $./StartSoccerAll

 -- The server & monitor will now be running on BlackBox. Leave the window
open and proceed.

2) Starting the C++ JAG team clients

 The following directions will distribute clients on nodes b1 through b4 of the
Beowulf

 FOR NODE b1:

 -- Open a "root" shell, by clicking on the shell icon on the toolbar
 at the bottom of the screen, and having someone log in as root

 -- Type in the following commands at the prompt ($), omitting the $

 $ rlogin b1
 $ cd /usr/local/sserver/client_soccer/scripts
 $./StartUpG1 blackbox

 -- Leave window open and proceed

 FOR NODES b2 - b4:

 -- Open a "root" shell, by clicking on the shell icon on the toolbar
 at the bottom of the screen, and having someone log in as root

 -- Type in the following commands at the prompt ($), omitting the $

 $ rlogin b2 (where b2 is the current node you are working with)

22

 $ cd /usr/local/sserver/client_soccer/scripts
 $./StartUp3 blackbox

 -- Leave window open and proceed

3) Starting Opponents

 -- Open a "root" shell, by clicking on the shell icon on the toolbar
 at the bottom of the screen, and having someone log in as root

 -- Type in the following commands at the prompt ($), omitting the $

 $ cd /usr/export/debian/usr/local/sserver/client_soccer/Respina2001Bin
 $./start3

 -- We think this is the correct directory where the Respina team is located, but we
 are not entirely sure. You may have to search for this directory.

4) Killing monitor, server, and clients (Must complete this step to re-run clients)

 KILL MONITOR:

 -- Kill the monitor (GUI of soccer field) by clicking the "Quit" button on the
actual GUI

 KILL SERVER:

 -- Go to the command prompt window that you used in Step 1.
 -- Hit the "CTRL + C" combination
 -- At the prompt, type:

 $./StopServer

 TO KILL JAG C++ CLIENTS:

 FOR EACH CLIENT COMMAND PROMPT WINDOW (i.e. Command prompt
windows for b1 - b4):
 -- Hit the "CTRL + C" combination
 -- At the prompt, type:

 $./StopAllSoccer

 When you are finally done running clients, close down all windows (you can
leave them open if you want to run them again.)

23

